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Abstract

Shakedown of planar beam structures\ with possible di}erent reinforcements in the upper and lower layers
of the beam members\ subjected to quasi!statically as well as dynamically ~uctuating loads is studied[ With
an assumption of elastic perfectly!plastic behaviour of the beams in bending\ a reduced kinematic formulation
for the safety factor determining shakedown limits is constructed\ which is proved to be equivalent to "but
simpler than# the original one\ and ready for use in solving practical problems[ Þ 0887 Elsevier Science Ltd[
All rights reserved[

0[ Introduction

Consider a planar frame of n beams of possible variable bending sti}ness associated naturally
with a system of axial coordinates "9 ¾ xi ¾ li#n

i�0[ Let k¾ i"xi\ t# denote the plastic curvature rate "t
is the time parameter#^ the _ctitious elastic moment response of the structure to external agencies
Me

l "xi\ t# in assumption of its perfectly elastic behaviour is con_ned to a certain time!independent
loading domain L\ the shakedown boundary of which should be determined "Pham 0885#]

L] M−
i "xi# ¾ Me

i "xi\ t# ¾ M¦
i "xi#\ i � 0\ [ [ [ \ n[ "0#

Usually in reinforced concrete beams\ the reinforcement is placed in both the lower and upper
layers\ and generally*in di}erent amounts[ If the reinforcement is not identical in both layers\ the
corresponding yield moments will also di}er[ Yield moments for simple bending are denoted by
M¦

Yi"xi# for positive bending "tension of the lower layer# and M−
Yi"xi# for negative bending "tension

of the upper layer#^ the simpli_ed physical assumption of elastic perfectly!plastic behaviour of the
beams in bending is adopted "Save and Massonnnet\ 0861^ Lubliner\ 0889#[ The dissipation
function D"k¾ i# should take the form

D"k¾ # � 6
M¦

Yik¾ i\ k¾ i − 9

−M−
Yik¾ i\ k¾ i ³ 9

[ "1#
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From eqn "1# one can see that

D"Li = Dki# � 6
Li = D"Dki#\ Li − 9

=Li = = D"−Dki#\ Li ³ 9
[ "2#

Shakedown kinematic theorem "Koiter\ 0852^ Ko�nig\ 0876^ Pham 0885# applied to our beam
structures can be expressed through the shakedown factor ks in generalized variables "moment and
curvature# as

k−0
s � sup

Me
i $L^k¾$A

s
n

i�0 g
li

9

dxi g
T

9

Me
i k¾ i dt

s
n

i�0 g
li

9

dxi g
T

9

D"k¾ i# dt

"3#

"at ks × 0 the structure will shake down\ while it will not at ks ³ 0#\ where the plastic curvature
rate k¾ i"xi\ t# belongs to the set of compatible plastic curvature cycles]

A � 6k¾ i $ K = Dki � g
T

9

k¾ i dt $ C7\ "4#

K is the set of plastic curvature _elds^ C W K is the subset from those _elds that satisfy com!
patibility conditions "kinematic constraints for a particular problem#^ Dki is called the "compatible#
curvature increment over a cycle[

The solution of the problem "3#\ "4# for a structure under quasi!static as well as dynamic loading
should yield the shakedown limits for the particular problem considered[

1[ A Reduced formulation

The formulation "2#\ "3# is hard to be used\ so our objective is to simplify it[ Any plastic curvature
rate _eld k¾ i $ A can be decomposed as

k¾ i"xi\ t# � Li"xi\ t#ðDki"xi#¦k9
i "xi#Ł\ Dki $ C\ k9

i $ K\

k9
i "xi# � 9 if xi $ Li � "9 ¾ xi ¾ li = Dki"xi# � 9#

"in addition\ define L9i � "9 ¾ xi ¾ li = Dki"xi# � 9##^ "5#

g
T

9

Li dt � 0\ g
T

9

"=Li =−Li# dt � Si"xi#\ xi $ Li^

g
T

9

Li dt � 9\ g
T

9

=Li = dt � 0\ xi $ L9i^ "6#

Dki"xi#\ k9i"xi# and Li"xi\ t# otherwise are arbitrary functions^ Si"xi#:1 measures the absolute value
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of the integral of Li"xi\ t# over the time intervals of the cycle\ during which Li"xi\ t# is negative[
Clearly Si"xi# can take all possible values[

One can see that the decomposition "5#\ "6# is generally enough to cover all possible plastic _elds
for the reinforced beams in bending " for general three!dimensional structures we would not have
such a {{relatively simple|| decomposition] the plastic strain rate _eld may take not only opposite
directions over times at di}erent points di}erently as indicated here\ but can also rotate in the
strain space#[

Equation "5# indicates that\ generally\ as di}erent points in a structure can follow di}erent
deformation patterns\ the plastic curvature _eld would not appear globally in pure monotonous
incremental "k¾ − 9\ Dki $ 9# or alternating "k¾ i $ 9\ Dki 0 9# modes[ Luckily enough\ we would get
a kind of separation in the _nal form of reduced kinematic theorem determining the shakedown
factor by a non trivial equivalent transformation process that followed[

With "6# one can verify

g
T

9

"=Li =¦Li# dt � Si¦1\ g
T

9

=Li = dt � Si¦0\ xi $ Li\

g
T

9

"=Li =¦Li# dt � 0\ g
T

9

"=Li =−Li# dt � 0\ xi $ V9i[ "7#

Denote

max
t

Me
i "xi\ t#"Dki¦k9

i # � Me
i "xi\ tuxi#"Dki¦k9

i # � Mu
i "xi#"Dki¦k9

i #\

min
t

Me
i "xi\ t#"Dki¦k9

i # � Me
i "xi\ tlxi#"Dki¦k9

i # � Ml
i"xi#"Dki¦k9

i #\ "8#

tuxi and tlxi denote the time instants\ at which the corresponding maximums and minimums are
reached[ Clearly

Mu
i "xi# � M¦

i "xi#\ Ml
i"xi# � M−

i "xi# if Dki¦k9
i − 9\

Mu
i "xi# � M−

i "xi#\ Ml
i"xi# � M¦

i "xi# if Dki¦k9
i ³ 9[ "09#

Substituting "5# into "3# we obtain ðfrom now on Dki\ k9
i \ Li are understood implicitly to satisfy

"5# and "6#\ while Me
i $ LŁ

k−0
s � sup

Dki\k
9
i \Li

s
n

i�0 g
li

9

dxig
T

9

Me
i "Dki¦k9

i #Li dt

s
n

i�0 g
li

9

dxi g
T

9

D"Li"Dki¦k9
i ## dt

[ "00#

With "2#\ "6#Ð"8# on can verify that
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g
T

9

Me
i "Dki¦k9

i #Li dt � g
T

9

Me
i "Dki¦k9

i # 0
=Li =¦Li

1
−

=Li =−Li

1 1 dt

¾Mu
i $0

Si

1
¦01Dki¦

0
1

k9
i %−Ml

i $
Si

1
Dki¦

0
1

k9
i %\ "01#

g
T

9

D"Li"Dki−k9
i ## dt � g

T

9

D 00
=Li =¦Li

1
−

=Li =−Li

1 1"Dki¦k9
i #1 dt

� 0
Si

1
¦01D"Dki#¦

Si

1
D"−Dki#¦

0
1

D"k9
i #¦

0
1

D"−k9
i #[ "02#

From "00#Ð"02# follows

k−0
s ¾ sup

Dki\k
9
i \Si−9

s
n

i�0 g
li

9 6M
u
i $0

Si

1
¦01Dki¦

0
1

k9
i %−Ml

i $
Si

1
Dki¦

0
1

k9
i %7 dxi

s
n

i�0 g
li

9 $0
Si

1
¦01D"Dki#¦

Si

1
D"−Dki#¦

0
1

D"k9
i #¦

0
1

D"−k9
i #% dxi

[ "03#

To verify that the expression in the right hand side of "03# can be reached by that of "00# with an
appropriately chosen trial _eld and then the inequality sign in "03# can be suppressed\ we take a
trial _eld Li"xi\ t# satisfying "6# "therefore the _eld is an admissible#

Li"xi\ t# � 6
0
1
"Si¦s#d"t−tuxi#−

0
1
Sid"t−tlxi#\ xi $ Li

0
1
d"t−tuxi#−

0
1
d"t−tlxi#\ xi $ L9i

"04#

ðd"t# is the Dirac functionŁ and substitute it into "00#]

g
li

9

dxi g
T

9

Me
i "Dki¦k9

i #Li dt � gLi

dxig
T

9

Me
i DkiLi dt¦gL9i

dxi g
T

9

Me
i k

9
i Li dt

� gLi
$Mu

i 0
Si

1
¦01Dki−Ml

i

Si

1
Dki% dxi¦gL9i

$Mu
i

0
1

k9
i −Ml

i

0
1

k9
i % dxi

� g
li

9 6M
u
i $0

Si

1
¦01Dki¦

0
1

k9
i %−Ml

i $
Si

1
Dki¦

0
1

k9
i %7 dxi\

g
li

9

dxi g
T

9

D"Li"Dki¦k9
i ## dt � gLi

dxi g
T

9

D"LiDki# dt¦gL9i

dxi g
T

9

D"Lik
9
i # dt

� g
li

9 $0
Si

1
¦01D"Dki#¦

Si

1
D"−Dki#¦

0
1

D"k9
i #¦

0
1

D"−k9
i #% dxi\

so
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k−0
s � sup

Dki\k
9
i \Li

s
n

i�0 g
li

9

dxi g
T

9

Me
i "Dki¦k9

i #Li dt

s
n

i�0 g
li

9

dxi g
T

9

D"Li"Dki¦k9
i ## dt

− sup
Dki\k

9
i \Si−9

s
n

i�0 g
li

9 6M
u
i $0

Si

1
¦01Dki¦

0
1

k9
i %−Ml

i $
Si

1
Dki¦

0
1

k9
i %7 dxi

s
n

i�0 g
li

9 $0
Si

1
¦01D"Dki#¦

Si

1
D"−Dki#¦

0
1

D"k9
i #¦

0
1

D"−k9
i #% dxi

"the supremum over Li should be greater than the expression obtained from an admissible one#[
The last inequality together with "03# implies

k−0
s � sup

Dki\k
9
i \Si−9

s
n

i�0 g
li

9 6M
u
i $0

Si

1
¦01Dki¦

0
1

k9
i %−Ml

i $
Si

1
Dki¦

0
1

k9
i %7 dxi

s
n

i�0 g
li

9 $0
si

1
¦01D"Dki#¦

Si

1
D"−Dki#¦

0
1

D"k9
i #¦

0
1

D"−k9
i #% dxi

[ "05#

Introduce a new function k¹ i"xi# that

k¹ i"xi# � 9\ xi $ Li\

k¹9
i "xi# � Si"xi#k¹ i"xi#\ Si"xi# − 9\ xi $ L9i "06#

ðfunctions Si"xi# for xi $ Li has already been de_ned in "6#*clearly Si"xi# can be an arbitrary
functionŁ\ then "05# can be rewritten as

k−0
s � sup

Dki\k
9
i \Si−9

s
n

i�0 g
li

9 $M
u
i Dki¦

0
1

Si"Mu
i −Ml

i#"Dki¦k¹ i#% dxi

s
n

i�0 g
li

9 $D"Dki#¦
Si

1
"D"Dki¦k¹ i#¦D"−Dki−k¹ i#% dxi

[ "07#

De_ne

SÞi"xi# �
0
1

Si"xi#ðD"Dki¦k¹ i#¦D"−Dki−k¹ i#Ł\ X � s
n

i�0 g
li

9

SÞi"xi# dxi "08#

ðas Si"xi# is an arbitrary positive function\ X is also an arbitrary positive scalarŁ\

U � max
0¾i¾n

max
9¾xi¾li

ðMu
i "xi#−Ml

i"xi#ŁðDki"xi#¦k¹ i"xi#Ł
D"Dki¦k¹ i#¦D"−Dki−k¹ i#

"19#

with xu
j being the point where the maximum is reached[

Substituting "08# into "07# and taking into account "19#\ one deduces
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k−0
s � sup

Dki\k¹ i\SÞi−9

s
n

i�0 g
li

9 $M
u
i Dki¦SÞi

"Mu
i −Ml

i#"Dki¦k¹ i#
D"Dki¦k¹ i#¦D"−Dki−k¹ i#% dxi

s
n

i�0 g
li

9

ðD"Dki#¦SÞiŁ dxi

¾ sup
Dki\k¹ i\X−9

s
n

i�0 g
li

9

Mu
l Dki dx¦X = U

s
n

i�0 g
li

9

D"Dki# dxi¦X

[ "10#

On the other hand\ putting an admissible variable

SÞi"xi# � X = d"xi−xu
j #ðxu

j is the maximum point of "19#Ł "11#

into the right hand of the equality in "10#\ we get the exact expression after the inequality sign ðthe
procedure is similar to that from "03#Ð"05#Ł[ Thus\ the expression is reachable and the inequality
can be changed for the equality\ that is

k−0
s � sup

Dki\k¹ i\X−9

s
n

i�0 g
li

9

Mu
i Dki dxi¦X = U

s
n

i�0 g
li

9

D"Dki# dxi¦X

[ "12#

The expression after sup in "12# depends monotonically upon X $ ð9\¦�#\ therefore\ the supremum
over X − 9 is attained at X � 9 or X � ¦�[ Hence

k−0
s � max"I\ A#\ "13#

where

I � sup
Dki$C

s
n

i�0 g
li

9

Mu
i Dki dxi

s
n

i�0 g
li

9

D"Dki# dxi

� sup
Dki$C

s
n

i�0 g
li

9

max "M¦
i Dki\ M−

i Dki# dxi

s
n

i�0 g
li

9

D"Dki# dxi

\ "14#
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A � sup
Dki$C\k¹ i$K

U

� sup
Dki$C\k¹ i$K\9¾xi¾li

ðMu
i "xi#−Ml

i"xi#ŁðDki"xi#¦k¹ i"xi#Ł
D"Dki¦k¹ i#¦D"−Dki−k¹ i#

� sup
i\9¾xi¾li

M¦
i "xi#−M−

i "xi#

M¦
Yi¦M−

Yi

[ "15#

Equation "14# represents the incremental collapse mode "with Dki $ C being a compatible plastic
increment over a cycle#\ while "15# re~ects the alternating plasticity collapse mode[

Thus the original di.cult problem "3#\ "4# has been transformed into a simpler reduced form
"13#Ð"15#[ The reduced form does not contain time integrals and is separated into the separated
terms I\ representing the incremental collapse\ and A\ representing the alternating plasticity mode[
It is equivalent to the original formulation "3#\ "4# under physical assumption "1#\ and applies to
general dynamic loading processes\ not just to the quasistatic ones\ to which the plastic limit and
also the classical shakedown analysis are usually restricted to[ We have given it a rigorous proof
without any restrictions[ So one is right to use eqns "13#Ð"15# directly in applications[ The respective
plastic limit problem can be considered as a limit case of the shakedown one "in case of static
loading#\ with the plastic limit factor kp being given as

k−0
p � sup

ki$C

s
n

i�0 g
li

9

Me
i "xi#k¾ i dxi

s
n

i�0 g
li

9

D"k¾ i# dxi

\ "16#

where k¾ i is the collapse curvature rate _eld\ which should be a compatible strain _eld] Me
i "xi#*

the _ctitious elastic moment distribution corresponding to the collapse point[
Certain similarity between "13#Ð"14# and "16# indicates that the methods available in solving the

latter "Symonds and Neal\ 0840^ Hodge\ 0848^ Save and Massonnet\ 0861^ Lubliner\ 0889# can be
developed for use in solving the former[ In shakedown analysis the boundary M¦

i "xi#M−
i "xi# ðsee

"0#Ł of the elastic moment response of the structure to external agencies "quasi!static as well as
dynamic# should be determined a priori[ Then the solution of "15# is simple and straightforward[
"14# presents certain di.culties as it requires the solution of a nonlinear optimization problem
over compatible _elds Dki $ C[ Plastic incremental collapse mechanisms can be constructed for use
there[ We will see some simple illustrations in the next section[

2[ Examples

Consider a uniform beam 9 ¾ x ¾ L clamped at one end and simply supported at the other
under quasi!static uniform transverse loads

q−
9 ¾ q"t# ¾q¦

9 [ "17#
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The _ctitious elastic moment response of the beam to external loads "17# should have the form

Me"x\ t# � −q 0
x1

1
−

4Lx
7

¦
L1

7 1\ "18#

which is con_ned to the boundary limits

M¦"x# � max
t

Me"x\ t# �

F

G

j

J

G

f

−q−
9 0

x1

1
−

4Lx
7

¦
L1

7 1\ 9 ¾ x ¾ L:3

−q¦
9 0

x1

1
−

4Lx
7

¦
L1

7 1\ L:3 ¾ x ¾ L

"29#

M−"x# � min
t

Me"x\ t# �

F

G

j

J

G

f

−q¦
9 0

x1

1
−

4Lx
7

¦
L1

7 1\ 9 ¾ x ¾ L:3

−q−
9 0

x1

1
−

4Lx
7

¦
L1

7 1\ L:3 ¾ x ¾ L

[ "20#

Application of "13#Ð"15# yields

A � max
9¾x¾L

M¦"x#−M−"x#

M¦
Y ¦M−

Y

� max
9¾x¾L

q¦
9 −q−

9

M¦
Y ¦M−

Y b
x1

1
−

4Lx
7

¦
L1

7 b�
L1"q¦

9 −q−
9 #

7"M¦
Y ¦M−

Y #
"21#

"here the maximum is reached at the point x � 9*that is the point of potential alternating plasticity
collapse#\

I � sup
Dk$C

g
L

9

max "M¦"x#Dk\ M−"x#Dk# dx

g
L

9

D"Dk# dx

[ "22#

To evaluate I we take an admissible incremental mechanism Dk with plastic hinges at x � 9 and
x � x9 ðsee Fig[ 0\ the free variable x9 then should be chosen to maximize I in eqn "22#Ł]

Dk � u9 = d"x#¦uH = d"x−x9#[ "23#

At small de~ections of the beam\ the angles u9\ uH can be given as

u9 � −
w9

x9

"w9 is the deflection#\
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Fig[ 0[ A beam under uniform loads[

uH �
w9

x9

¦
w9

L−x9

� −u9 00¦
x9

L−x91[ "24#

Substituting eqns "29#\ "20#\ "23# and "24#\ into "22#\ one will get

I � max "I0\ I1#\ "25#

where

I0 � sup
9³x9³L

q¦
9 $

L1

7
− 0

x1
9

1
−

4Lx9

7
¦

L1

7 1 00¦
x9

L−x91%
M−

Y ¦M¦
Y 00¦

x9

L−x91
\

I1 � sup
9³x9³L

−q−
9 $

L1

7
− 0

x1
9

1
−

4Lx9

7
¦

L1

7 1 00¦
x9

L−x91%
M¦

Y ¦M−
Y 00¦

x9

L−x91
[ "26#

I0 corresponds to the incremental collapse in the downward direction "w9 ³ 9#\ while I1 represents
the upward mode "w9 ³ 9#[ Formulae "13#\ "21#\ "25#\ "26# determined the shakedown limits q¦

9 \
q−

9 corresponding to ks � 0[ Though one of the external values of the elastic moment Me is attained
at x � 2L:7 ðthe other one is at x � 9\ consult eqns "29#\ "20#Ł\ the optimal point x9 in eqns "26#\
which determines a plastic hinge for the most dangerous collapse mechanism\ may not be the same
"see the numerical illustration that followed#[

More generally\ we consider the same structure under quasi!periodic dynamic loading

q"t# � q9¦q0 sin vt\ "27#

where q9\ q0\ v are arbitrary quasi!static functions of time\ which are con_ned to
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q−
9 ¾ q9"t# ¾ q¦

9 \ 9 ¾ q0"t# ¾ q¦
0 \ 9 ¾ v"t# ¾ v0[ "28#

Denote

a � 0
mv1

EJ 1
0:3

\ a0 � 0
mv1

0

EJ 1
0:3

\ "39#

where m is the mass density\ EJ*the bending sti}ness of the beam[
The elastic moment response of the beam to the dynamic load "27# is much more complicated

in comparison with that in the quasi!static case]

Me"x\ t# � −q9 0
x1

1
−

4Lx
7

¦
L1

7 1¦
q0

1a1
sin vt 61 cos ax−

0
chaL

"cos ax¦chax#

¦ð"sin ax¦shax#−"cos ax¦chax#thaLŁ
1 cos aLchaL−chaL−cos aL

shaL cos aL−chaL sin aL 7[ "30#

Following the same steps as in the quasi!static case we evaluate M¦"x#\ M−"x# from eqns "28#\
"30#\ and then A\ I and ks[ We can take an admissible incremental mechanism as that of "23#\ "24#
with x9 being chosen to maximize I for a particular problem considered[ In particular\ substituting
eqns "23#\ "24# into eqns "21#\ "22#\ one gets

k−0
s � max "I\ A#\ "31#

where

A � "M¦
Y ¦M−

Y #−0 = max
9¾x¾L

ðM¦"x#−M−"x#Ł\

I � sup
9 ³x9³L

I"x9#\ I"x9# � max "I0"x9#\ I1"x9##\

I0"x9# � $M−
Y ¦M¦

Y 00¦
x9

L−x91%
−0

$−M−"9#¦M¦"x9# 00¦
x9

L−x91%\

I1"x9# � $M¦
Y ¦M−

Y 00¦
x9

L−x91%
−0

$M¦"9#−M−"x9# 00¦
x9

L−x91%[
For illustration\ take M¦

Y � 3M−
Y � 3MY\ q−

9 � 9[ The shakedown curves ks � 0\ under which
the structure is safe\ in the plane of dimensionless load amplitude coordinates
q¹9 � q¦

9 L1"24[77MY#\ q¹0 � q¦
0 L1:"24[77MY# at various values of dimensionless frequency bound

a¹ � a0L are presented in Fig[ 1 "q¹9 � 0 is the unshakedown limit in the case of quasistatic loading
q¹0 0 9#[

From Fig[ 1 one sees that as a¹ and q¹0 increase\ the limit q¹9 decreases drastically from the value
q¹9 � 0 corresponding to the quasistatic case "q¹0 0 9# toward q¹9 � 9[133 at a¹ � 1[74 and q¹0 � 9[93\
though q¹0 is relatively small compared with q¹9[ Thus\ the dynamic e}ect is strong[ The calculations
also indicate that\ even in the quasistatic case\ the optimal point x9 � 9[417L determining a plastic
hinge of a potential mechanism does not coincide with the point x � 9[514L where the elastic
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Fig[ 1[ The shakedown curves in the plane of load amplitudes "uniform loading#[

moment Me reaches its extremal value[ As a¹ and q¹0 increase\ the optimal point x9 moves toward
the right end x � L "in particular\ x9 � 9[587L at a¹ � 1\ q¹0 � 9[93\ while x9 � 9[667L at a¹ � 1[6\
q¹0 � 9[93\ and x9 � 9[761L at a¹ � 1[8\ a¹0 � 9[93#[ Thus the dynamic e}ect can change greatly the
picture of the most dangerous collapse mechanism[ Note that for the quasistatic loading\ the three!
point mechanism in Fig[ 0 is instantaneous and is considered here as a trivial case of the more
general incremental collapse mode\ in which the deformation may increase step by step following
load cycles[ However for quasiperiodic dynamic loading\ because of the inertia e}ect\ the three!
point mechanism appears incremental in the strict sense[

Next\ we consider the same beam subjected to a quasi!periodic dynamic point load P"t# at the
point x � xp "Fig[ 2#

P"t# � P9¦P0 sin vt\ "32#

where P9\ P0\ v are arbitrary quasi!static functions of time\ which are con_ned to

P−
9 ¾ P9"t# ¾ P¦

9 \ 9 ¾ P0"t# ¾ P¦
0 \ 9 ¾ v"t# ¾ v0[ "33#

With the notation "39#\ the elastic moment response of the beam to the load "32# has the form

Me"x\ t# �

F

G

G

G

G

j

J

G

G

G

G

f

P0 sin"a"xp−L## sinvt
1a"cos aLthaL−sin aL#

ð−sin ax−shax¦thaL"cos ax¦chax#Ł

¦P9x 00−
2x1

p

1L1
¦

x2
p

1L21¦P9 0−xp¦
2x1

p

1L
¦

x2
p

1L11\ 9¾x¾xp

p0 sinvt
1a"cos aLthaL−sin aL# $−

sin"a"xp−L##
chaL

sh"a"x−L##−"thaL cos axp

−sin axp# sin"a"x−L##%¦P9"L−x# 0
2x1

p

1L1
−

x2
p

1L21\ xp ¾x¾L

"34#
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Fig[ 2[ A beam under a point load[

Fig[ 3[ The shakedown curves in the plane of load amplitudes "point loading#[

The formulae "31# of the previous example apply there as well with the only di}erence in the
particular expressions of the limits M¦"x# and M−"x#\ which are determined from eqns "33#\ "34#[

For illustration\ take M¦
Y � 3M−

Y � 3MY\ P−
9 � 9\ xp � 9[4L[ The shakedown curves ks � 0\

under which the structure is safe\ in the plane of dimensionless load amplitude coordinates
PÞ9 � P¦

9 L1:"07MY#\ PÞ0 � P¦
0 L1:"07MY# at various values of dimensionless frequency bound

a¹ � a0L are presented in Fig[ 3 "PÞ9 � 0 is the unshakedown limited in the case of quasistatic
loading PÞ00 9#[

The same general tendency as that of the previous example is observed here\ which indicates
strong e}ects of the dynamic ~uctuating part[ Though in the quasistatic case the most dangerous
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collapse mechanism is the one with the plastic hinge at x9 � xp*the load point\ in the dynamic
case\ this trivial observation may not be true[ Numerical results indicate that at the bound a¹ � 2[3
and q¹0 � 9[93\ the critical x9 is about 9[50L "recall that in our example xp � 9[4L#\ while at a¹ � 2[37
and q¹0 � 9[93\ one get x9 � 9[77L[

3[ Conclusion

Shakedown analysis of planar beam structures\ with generally di}erent reinforcements in the
upper and lower layers of the beams is given[ An usual assumption "1# on elastic!perfectly plastic
behaviour of the beam in bending is taken\ so that the classical shakedown theory can apply[ The
reduced expression for the shakedown factor "13#Ð"15# has been constructed\ which is equivalent
to but simpler than the original formulation "3#\ "4#\ hence can be safely recommended for direct
practical use without referring to the latter[ The practical signi_cance of the shakedown design in
comparison with the more frequently used plastic limit design is that the former is safer and applies
to a larger class of problems for structures under dynamic loading "Pham\ 0881\ 0885#\ which lie
outside the framework of limit design[ Shakedown analysis requires "generally!dynamic# elastic
response of the structure to external agencies to be determined a priori\ in particular its boundary
M¦

i "xi# and M−
i "xi# from "0#[ It might not be an easy task for general dynamic loading[ However

many dynamic loading processes one encounters in practice can be approximated by quasi!periodic
ones\ which are relatively easy for description as those in case of quasi!static loading[ Strong
impulsive loading processes can also be incorporated into consideration\ once the respective elastic
response of a structure "in particular\ the limits of it in the stress space# has been determined a
priori[
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