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Abstract

Shakedown of planar beam structures, with possible different reinforcements in the upper and lower layers
of the beam members, subjected to quasi-statically as well as dynamically fluctuating loads is studied. With
an assumption of elastic perfectly-plastic behaviour of the beams in bending, a reduced kinematic formulation
for the safety factor determining shakedown limits is constructed, which is proved to be equivalent to (but
simpler than) the original one, and ready for use in solving practical problems. © 1998 Elsevier Science Ltd.
All rights reserved.

1. Introduction

Consider a planar frame of n beams of possible variable bending stiffness associated naturally
with a system of axial coordinates {0 < x; < /;}/_,. Let &;(x;, f) denote the plastic curvature rate (z
is the time parameter); the fictitious elastic moment response of the structure to external agencies
M (x;, t) in assumption of its perfectly elastic behaviour is confined to a certain time-independent
loading domain %, the shakedown boundary of which should be determined (Pham 1996):

LM; (x) < M{(x;,t) <M}t (x), i=1,...,n (1

Usually in reinforced concrete beams, the reinforcement is placed in both the lower and upper
layers, and generally—in different amounts. If the reinforcement is not identical in both layers, the
corresponding yield moments will also differ. Yield moments for simple bending are denoted by
M 3:(x;) for positive bending (tension of the lower layer) and M y,(x;) for negative bending (tension
of the upper layer); the simplified physical assumption of elastic perfectly-plastic behaviour of the
beams in bending is adopted (Save and Massonnnet, 1972; Lubliner, 1990). The dissipation
function D(k;) should take the form

M)ti}{:ia K =0
D(k) = (2

—MyK, K <0
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From eqn (2) one can see that

A['D(AK,‘), A[ 2 0

. 3
|Ail* D(—=Axk), A; <0 ©

D(A;* Ak;) = {

Shakedown kinematic theorem (Koiter, 1963; Ko6nig, 1987; Pham 1996) applied to our beam
structures can be expressed through the shakedown factor &, in generalized variables (moment and
curvature) as

n 1; T
ZJ dx,-J Mex, dt
i=1 Jo 0

1

kil= sup ——0—0 Q)
Mf{eZ ket ZJ\ dx,j D(K,) dl

1Jo 0

(at k, > 1 the structure will shake down, while it will not at k; < 1), where the plastic curvature
rate x,(x, t) belongs to the set of compatible plastic curvature cycles:

T

0

K; dte(é}, %)

A" is the set of plastic curvature fields; ¥ — 4" is the subset from those fields that satisfy com-
patibility conditions (kinematic constraints for a particular problem); Ak; is called the (compatible)
curvature increment over a cycle.

The solution of the problem (4), (5) for a structure under quasi-static as well as dynamic loading
should yield the shakedown limits for the particular problem considered.

2. A Reduced formulation

The formulation (3), (4) is hard to be used, so our objective is to simplify it. Any plastic curvature
rate field k,€ .o/ can be decomposed as

Ki(x;, 1) = A, O[AK(x) + k) (x)], Ax,eb, k)ed,

k'(x) =0 ifx;el, ={0<x <Il|Aki(x,) # 0}

(in addition, define Ly; = {0 < x; < [;| Axi(x;) = 0}); (6)
T T

J A;dt=1, J (Al —A) dt = Si(x), x;eL;

0 0

T T
JA,-dt=O, J'Al"‘”:l’ x,€ Ly ™)

0 0

Axi(x;), k"(x;) and A/(x, 1) otherwise are arbitrary functions; S;(x;)/2 measures the absolute value
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of the integral of A,(x, t) over the time intervals of the cycle, during which A,(x,, ) is negative.
Clearly S;(x,) can take all possible values.

One can see that the decomposition (6), (7) is generally enough to cover all possible plastic fields
for the reinforced beams in bending (for general three-dimensional structures we would not have
such a “‘relatively simple” decomposition: the plastic strain rate field may take not only opposite
directions over times at different points differently as indicated here, but can also rotate in the
strain space).

Equation (6) indicates that, generally, as different points in a structure can follow different
deformation patterns, the plastic curvature field would not appear globally in pure monotonous
incremental (k > 0, Ak; # 0) or alternating (k; # 0, Ax; = 0) modes. Luckily enough, we would get
a kind of separation in the final form of reduced kinematic theorem determining the shakedown
factor by a non trivial equivalent transformation process that followed.

With (7) one can verify

T

T
J(|Ai|+Ai)d[:Si+2a J Al dt =S +1, x;eL,

0 0

T T
J (IAl+A)dr =1, f (Al =A)dr =1, x;eV. (®)

0 0
Denote
m?-x M (x;, 1)(Ak,; + K:‘O) = M7 (x;, 1) (Ax; + K?) = M} (x;)(Ax;+ K?),

mtin M (x;, )(Ak, + Kz(‘)) = M{(x,, t.lw‘) (Ax;+ K?) = M?(xi) (Ar;+ K;‘O): )

t“, and r; denote the time instants, at which the corresponding maximums and minimums are
reached. Clearly

Mi(x) =M (x), Mi(x) =M (x) ifAx;+x] >0,
Mi(x) = M[(x), Mi(x) =M (x) if Ar;+x7 <O0. (10)

Substituting (6) into (4) we obtain [from now on Ax;, k!, A, are understood implicitly to satisfy
(6) and (7), while M{ e Z]

M=

I T
J dx,j M¢(Ak; +Kk))A,; di
0

. . 11)
J dx; J D(A(Ax;+ k7)) di

0

1

(=}

ki'= sup

Ak A

-~

-

1

With (3), (7)—(9) on can verify that
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T

T
J M¢(Ak,+x))A,; dt = J

Al+A A=A
M (Ak;+x)) (l d+4; 1A ’)dt
0 0

2 2

S, 1 s, 1
<M (1) Ak i |— M| 2 A+ - i
l[(z + > Kl+2Kl} 1[2 Kl+ 2’(:1}7

T T Al4A A=A
J D(A;(Ak;—k?))dt = J D ((' '|2+ i ’|2 ’>(Axi+x?)>dt
0 0

=(Z+1 DAK)-l—*iD(—AK)-l—lD K0)+1D —x))
2 (Ar; 2 v & 2 (= ).
From (11)—(13) follows

no S; 1 S; 1
M= +1 A+ =k | =M 2 A+ =0 _
L[t fran [ e o

/i S; S; 1 0 1 0 .
j [(2 +1>D(AK,»)+ 2 D(~Ak)+ 5 D)+ 2D(—Kf)]dxf

0

k7'<  sup

Ak k0,5, 0

e

i=1

(12)

(13)

(14)

To verify that the expression in the right hand side of (14) can be reached by that of (11) with an
appropriately chosen trial field and then the inequality sign in (14) can be suppressed, we take a

trial field A;(x;, r) satisfying (7) (therefore the field is an admissible)

1 u 1 !
S(Si+8)o(t—1y) —3So(t—1y), x.eL;
Ai(x;, 1) = {2 ’

1 uy 1
55(t_txi)_§5(1_t.lxi): X; € Ly;

[0(?) is the Dirac function] and substitute it into (11):

I T

0 0 L

T a
dx,j MfAKI-A,-dZ—FJ dx,j M)A, dt

0 L; 0

s, S, 1 1
L, [M? (2' + 1>AK,—M§2'AK,1dx,-+Lm [Mﬁ’zxf’—Mf2x?del—
] s, 1 s, 1
L {M? [(2 + 1>AK,-+ 2K,(-):|—M5 |:2AK,-+ 2K?]}dx,,

J ", J " DA Ak, %)) dr = J

0 0 L;

T
dx,f D(AAxk) dz+J

0 Ly;

T
dx,f D(Ax))dt

0

D

SO

(15)

/S, Si 1 0 1 0
J; |:<2 + 1>D(AK,-)+ ED(—AK,-)-i- ED(Ki )+ ED(_Ki ):|dxi,
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M=

I T
J dx; J M¢(Ax,+xD)A; dt
i=1

0 0

k;i'= sup

Arciic? A

N

I, T
J dx,f D(A(Ax; +x)) dt

0 0
no o1 (S 1, S 1,
= sup

et sso0 & (/S S; 1 1
A Sz 211 ) D(AK) + 2 D(—Ak) + = D(K°) + =~ D(—«°) |dx;
Al 1\2 2 2 2

i=1

(the supremum over A; should be greater than the expression obtained from an admissible one).
The last inequality together with (14) implies

" l u Si 1 0 / Si 1 0

kil= sup S 1 1 (16)
Kkik9 .S > n i Si i
MEEEEOS 2 1) DAk + 2 D(—Ak) + 5 D(kD) + = D(—«?) |dx,
i=1Jo 2 2 2 2
Introduce a new function &,(x,) that
ki(x) =0, xelL,
K7 (x) = S;(x)Ri(x,), Si(x) =0, x€Ly, (17

[functions S;(x;) for x,e L, has already been defined in (7)—clearly S,(x;) can be an arbitrary
function], then (16) can be rewritten as

n l; 1
> J [M;’AK,-—i- 2S,»(M§‘—M§)(Alci+r€i)}dx,~
i=1Jo

ks—l = Sup n A S | (18)
A S;2 0 Z J |:D(AK,') + Ei(D(AK,'-f— k;) +D(— Ak, — K;):| dx;

i=1Jo

Define
Sf(xi) = %Si(xi)[D(AKi_‘_ﬁi)+D(_AK1'_’€1')]’ X = i Jli S_i(xi) dx; (19)

[as Si(x;) is an arbitrary positive function, X is also an arbitrary positive scalar],

U= max max [M}(x;)— Mf(xr)] [Ar;(x;) + R (x;)] (20)
1<isno<y<y  D(AK;+R;)+ D(—Ak; —K;)

with x} being the point where the maximum is reached.
Substituting (19) into (18) and taking into account (20), one deduces
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- B (MY — MY (Ax; + i)
“ Ak, + S, '
)3 L [M' K’+S’D(Arcf+;€,-)+D(—A’<f—’€i)}dx,

i=1

k;'= sup

Ak, 5,820

n l;
> J [D(Ak) + 5] dx;
i=1J0

n l;
J MiAk,dx+ XU
i=1J0

< sup p . (21
Arxprp X=0 1 i
y J D(Ak;)dx,+ X
i=1

0

On the other hand, putting an admissible variable
Si(x)) = X+ 0(x;—x¥)[x* is the maximum point of (20)] (22)

into the right hand of the equality in (21), we get the exact expression after the inequality sign [the
procedure is similar to that from (14)—(16)]. Thus, the expression is reachable and the inequality
can be changed for the equality, that is

n /;
Y j M¥Ax,dx,+ X+ U
k;'= sup . ) (23)
Ak;R;, X=0 n i
> J D(Ak) dx;+ X

0

i=1

The expression after sup in (23) depends monotonically upon X € [0, 4 o0), therefore, the supremum
over X > 0 is attained at X = 0 or X = + c0. Hence

k;' = max{I, A}, (24)

where

(l

I M¥Ax; dx;

M,
Y | D(Ak))dx;

i=1Jo

n

'max {M} Ak, M Ak} dx;

i=1Jo

= n 1;
At y J D(Ax,) dx,

i=1J0

: (25)
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A= sup U

Ak €b ,kieX

[M(x;) — Mi(x)][Ax,(x) + 7y (x)]
At e o<x<i; DAk +R)+ D(— Ak, —R,)

M (x)—M; (x)
sup )
wsy<,  M¥yE+My,

(26)

Equation (25) represents the incremental collapse mode (with Ak, % being a compatible plastic
increment over a cycle), while (26) reflects the alternating plasticity collapse mode.

Thus the original difficult problem (4), (5) has been transformed into a simpler reduced form
(24)—(26). The reduced form does not contain time integrals and is separated into the separated
terms /, representing the incremental collapse, and A, representing the alternating plasticity mode.
It is equivalent to the original formulation (4), (5) under physical assumption (2), and applies to
general dynamic loading processes, not just to the quasistatic ones, to which the plastic limit and
also the classical shakedown analysis are usually restricted to. We have given it a rigorous proof
without any restrictions. So one is right to use eqns (24)—(26) directly in applications. The respective
plastic limit problem can be considered as a limit case of the shakedown one (in case of static
loading), with the plastic limit factor k, being given as

n /;
Z j M (x;)K; dx;
k, ' = sup , (27)

where k; is the collapse curvature rate field, which should be a compatible strain field: M¢(x,)—
the fictitious elastic moment distribution corresponding to the collapse point.

Certain similarity between (24)—(25) and (27) indicates that the methods available in solving the
latter (Symonds and Neal, 1951; Hodge, 1959; Save and Massonnet, 1972; Lubliner, 1990) can be
developed for use in solving the former. In shakedown analysis the boundary M ;" (x,)M [ (x;) [see
(1)] of the elastic moment response of the structure to external agencies (quasi-static as well as
dynamic) should be determined a priori. Then the solution of (26) is simple and straightforward.
(25) presents certain difficulties as it requires the solution of a nonlinear optimization problem
over compatible fields Ax, e €. Plastic incremental collapse mechanisms can be constructed for use
there. We will see some simple illustrations in the next section.

3. Examples

Consider a uniform beam 0 < x < L clamped at one end and simply supported at the other
under quasi-static uniform transverse loads

g0 <q(1) <qq. (28)
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The fictitious elastic moment response of the beam to external loads (28) should have the form

x* 5Lx L?
M(x,1) = —q<2_8+8>’ (29)

which is confined to the boundary limits

2 8 8

(x> SLx L?
—4o
M*(x) = max Me(x,t) = (30)

= + > 0<x<L/4

(5 SL—XJrL—2 0<x<L/4
©\y 7 g Tgp USES
M~ (x) =min M“(x, 1) = (31)
©\27 8 Tg) SES
Application of (24)—(26) yields
M*(x)—M (x)
A = max
0<x<L MT+My
— max 96 —4do |x2_5Lx+£=M (32)
o<x<LM¢+M;\2 8 8| 8M}+My)

(here the maximum is reached at the point x = 0—that is the point of potential alternating plasticity
collapse),

L

max {M* (x)Ax, M~ (x)Ax} dx
I=sup™ . . (33)
AKe?
J D(Ak) dx

0

To evaluate I we take an admissible incremental mechanism Ak with plastic hinges at x = 0 and
X = X, [see Fig. 1, the free variable x, then should be chosen to maximize / in eqn (33)]:

Ak = 04 5(x)+ 0y 6(x—xp). (34)

At small deflections of the beam, the angles 6,, 8,; can be given as

w ) .
0, = — —O(WO is the deflection),
Xo
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w
Fig. 1. A beam under uniform loads.
w w X
0, = °+L "x ——00<1+L °x>. (35)
0 —Xo

Substituting eqns (30), (31), (34) and (35), into (33), one will get
I:max{ll,lz}, (36)

where
L? x5 SLx, L?
.
—— = 1
a5 +s><+ ol
I, = su ,
0<xg<L
MY+MY< )
B iz xo 5Lx0
qo g )
I, = sup (37)
0<xg<L

MT+My <1+ )
L—Xx,

I, corresponds to the incremental collapse in the downward direction (w, < 0), while I, represents
the upward mode (w, < 0). Formulae (24), (32), (36), (37) determined the shakedown limits ¢ ,
gy corresponding to k, = 1. Though one of the external values of the elastic moment M¢ is attained
at x = 3L/8 [the other one is at x = 0, consult eqns (30), (31)], the optimal point x, in eqns (37),
which determines a plastic hinge for the most dangerous collapse mechanism, may not be the same
(see the numerical illustration that followed).

More generally, we consider the same structure under quasi-periodic dynamic loading

q(1) = go+q, sinwt, (38)

where ¢, ¢;, w are arbitrary quasi-static functions of time, which are confined to
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do <q()<qs, 0<q()<gqi, 0<o@)<o. (39)
Denote
maw*\'* moi\'*
oc=<EJ> , oc1=<EJ> , (40)

where m is the mass density, £/—the bending stiffness of the beam.
The elastic moment response of the beam to the dynamic load (38) is much more complicated
in comparison with that in the quasi-static case:

) x> S5Lx L? q .
M(x,t) = —qo |5 — (5 + 5 |t ,sinwt{2cosox—

1
7 2 g 2y ChOCL(COS ox +chox)

+ [(sin ax + shox) — (cos ox + chox) tho L]

2cosolchoal —chol —cos ol 41
sho L cosal.—choL sin ol 1)

Following the same steps as in the quasi-static case we evaluate M ™" (x), M (x) from eqns (39),
(41), and then A4, I and k,. We can take an admissible incremental mechanism as that of (34), (35)
with x, being chosen to maximize / for a particular problem considered. In particular, substituting
eqns (34), (35) into eqns (32), (33), one gets

k;' = max {1, A}, (42)
where

A= M7 +My) " max [M*(x)—M (v)],

0<x<L

I= sup Ll(xo)a I(x,) = max {11 (xo),lz(xo)},

0 <xp<

Il(xo)z[MyﬂLM? <1+ all >:|1|:_M(0)+M+(x0)<1+ al )}

L_XO L_xO

L(x,) = [MHMY <1+ Lf)x ﬂ [M*(O)—M(xo) <1+ Lf(’x ﬂ

For illustration, take M} = 4M; = 4M,, g, = 0. The shakedown curves k, = 1, under which
the structure is safe, in the plane of dimensionless load amplitude coordinates
o = qoa L*(35.88My), G, = qi L*/(35.88M ) at various values of dimensionless frequency bound
= o, L are presented in Fig. 2 (g, = 1 is the unshakedown limit in the case of quasistatic loading
L = 0).

From Fig. 2 one sees that as & and ¢, increase, the limit g, decreases drastically from the value
go = 1 corresponding to the quasistatic case (¢, = 0) toward g, = 0.244 at & = 2.85 and g, = 0.04,
though g, is relatively small compared with g,. Thus, the dynamic effect is strong. The calculations
also indicate that, even in the quasistatic case, the optimal point x, = 0.528 L determining a plastic
hinge of a potential mechanism does not coincide with the point x = 0.625L where the elastic

R
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1
081 I~
0.6+ ~o | e
g, =27
0.4+ a=2.9 |
0.2+
0 + + + t t t +
0 0.01 0.02 0.03 0.04

a

Fig. 2. The shakedown curves in the plane of load amplitudes (uniform loading).

moment M° reaches its extremal value. As & and g, increase, the optimal point x, moves toward
the right end x = L (in particular, x, = 0.698L at & = 2, §, = 0.04, while x, = 0.778L at & = 2.7,
G, = 0.04, and x, = 0.872L at & = 2.9, a, = 0.04). Thus the dynamic effect can change greatly the
picture of the most dangerous collapse mechanism. Note that for the quasistatic loading, the three-
point mechanism in Fig. 1 is instantaneous and is considered here as a trivial case of the more
general incremental collapse mode, in which the deformation may increase step by step following
load cycles. However for quasiperiodic dynamic loading, because of the inertia effect, the three-
point mechanism appears incremental in the strict sense.

Next, we consider the same beam subjected to a quasi-periodic dynamic point load P(r) at the
point x = x, (Fig. 3)

P(t) = Py+ P, sinwt, (43)
where P,, P,, w are arbitrary quasi-static functions of time, which are confined to

Py <Py ()< Py, 0SSP (<P, 0<o()<o,. (44)

With the notation (40), the elastic moment response of the beam to the load (43) has the form

r P, sin(a(x,— L)) sin wt
2a(cos aLtho L —sin o L)

[ —sin ax — shox + thaL(cos ox + chox)]

2L 207 2L 22
M,(x,1) = < (45)

P sinwt sin(a(x,—L))
— h — L)) — (thaL
2o(cos aLtho L —sin o) [ chal sh(@(x—1)) = (thaL cosax,

3x,  x; 3x,  x,
+Pyx|1— +——|+P | —x,+ -+ ) 0<x<yx,

. . 3% _ %
—sinax,) sin(a(x— L)) |+ Py(L—x) E — E , X, <x<L

-
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4 Y
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0 P X
Y
Xp H
X0
w
Fig. 3. A beam under a point load
1
081 TN~
061 -
',5 G=3.4
[ -
0.4+ 0=3.48
0.2+
0 ‘ .
0 0.01 0.02 0.03 0.04

P

Fig. 4. The shakedown curves in the plane of load amplitudes (point loading).

The formulae (42) of the previous example apply there as well with the only difference in the
particular expressions of the limits M (x) and M~ (x), which are determined from eqns (44), (45).

For illustration, take My =4M5 =4M,, P; =0, x, = 0.5L. The shakedown curves k, = 1,
under which the structure is safe, in the plane of dimensionless load amplitude coordinates
P, =P;L*/(18My), P, = Py L*/(18M,) at various values of dimensionless frequency bound
o = o, L are presented in Fig. 4 (P, =1 is the unshakedown limited in the case of quasistatic
loading P, = 0).

The same general tendency as that of the previous example is observed here, which indicates
strong effects of the dynamic fluctuating part. Though in the quasistatic case the most dangerous
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collapse mechanism is the one with the plastic hinge at x, = x,—the load point, in the dynamic
case, this trivial observation may not be true. Numerical results indicate that at the bound & = 3.4
and g, = 0.04, the critical x, 1s about 0.61L (recall that in our example x, = 0.5L), while at & = 3.48
and g, = 0.04, one get x, = 0.88L.

4. Conclusion

Shakedown analysis of planar beam structures, with generally different reinforcements in the
upper and lower layers of the beams is given. An usual assumption (2) on elastic-perfectly plastic
behaviour of the beam in bending is taken, so that the classical shakedown theory can apply. The
reduced expression for the shakedown factor (24)—(26) has been constructed, which is equivalent
to but simpler than the original formulation (4), (5), hence can be safely recommended for direct
practical use without referring to the latter. The practical significance of the shakedown design in
comparison with the more frequently used plastic limit design is that the former is safer and applies
to a larger class of problems for structures under dynamic loading (Pham, 1992, 1996), which lie
outside the framework of limit design. Shakedown analysis requires (generally-dynamic) elastic
response of the structure to external agencies to be determined a priori, in particular its boundary
M (x;) and M (x;) from (1). It might not be an easy task for general dynamic loading. However
many dynamic loading processes one encounters in practice can be approximated by quasi-periodic
ones, which are relatively easy for description as those in case of quasi-static loading. Strong
impulsive loading processes can also be incorporated into consideration, once the respective elastic
response of a structure (in particular, the limits of it in the stress space) has been determined a
priori.
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